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ABSTRACT

29%¢°

The purpose of this project is to empirically evaluate
the theoretical model of latent class analysis proposed by
T. W. Anderson (Psychometrika, 1954, 19, 1-10). This model
was designed to determine if a population of respondents
could be divided into a finite number of m distinct groups
or classes. A basic assumption of the latent class model is
that the responses of subjects in the same class to differ-
ent dichotomous items are statistically independent. Using
the manifest probabilities of positive response of the per-
sons in a random sample, the computational method provides
estimates of the latent parameters, that is, the proportion
of the population in each latent class and the probability
of positive response associated with each item for each la-
tent class.

A history of the development of this topic is covered:
this includes a detailed description of the computational
procedures of B. F. Green, Jr. (Psychometrika, 1951, 16,
151-166) and Anderson. After a modification of Anderson's
is presented, the model is tested using a population of

known characteristics. The properties of the solution are

described and an evaluation of the method is given. /ﬁéfﬁh(oJ



PREFACE

One goal associated with the application of mathemati-
cal terminology and techniques to psychological data is the
introduction of structure into a seemingly unordered domain.
As an example, factor analysis is the generic name for many
different methods of analyzing the intercorrelations between
a set of variables such as tests or even items within a test.
Whether the purpose is to evaluate a hypothesis concerning
the nature of mental ability or, as in most instances, to
determine the minimum number of independent dimensions which
are necessary to explain most of the variance in the origi-
nal variables, the result is a structuring of the data. This
leads to a clearer and more accurate comprehension of the
underlying factors in a given situation than could have been
attained on the basis of the initial observations alone.

Although factor analysis is the best known, it is not
the only structural method to be considered for the purpose
of establishing hidden meaning in observed behavior. From
research on attitude measurement, Lazarsfeld [1950] proposed
the latent structure model, a means of determining the prob-
ability of choosing a specific alternative of a dichotomous

item for those respondents in the population having the same
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attitude strength. Utilizing coordinate axes, the attitude
continuum was represented by the abscissa and the probability
of response by the ordinate; in this way, a probability trace
line for each item became hypothetically defined. In a prac-
tical situation, this model was designed to provide estimates
of the trace line parameters from the responses of randomly
sampled subjects. |

Green [1951] and Anderson [1954] modified Lazarsfeld's
approach to one which was called the latent class model. By
making the additional assumption that the population of re-
spondents could be divided into a finite number of discrete
classes, they eliminated the problem of postulating a specif-
ic relationship between the trait of concern and the response
probability such as, for example, a linear trace line model.
McHugh [1956] and Gibson [1955, 1962] extended Anderson's
solution in order to improve the resulting probability esti-
mates. Because of its greater range of possible application,
much more attention has been devoted to the latent class
model than to its predecessor, the latent structure model.

It is surprising to note that, to this date, the latent
class model has received only theoretical consideration in
psychological research. Gibson [1959], in commenting on its
potential usefulness, has shown that this model avoids many

of the problems inherent in the factor analytic model, namely
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communality estimation, rotation, and curvilinearity. The ma-
jor difficulty in any practical use of this technique would
be its computational complexity. Eliminating this barrier by
taking advantage of modern electronic data-processing meth-
ods, the goals of this research are to assess the worth of
the latent class model by empirical means and to give recom-
mendations regarding its future application.

The selection of this topic as a thesis project occurred
quite by accident. As a graduate student in the Department
of Psychology of the University of Maryland, the author was
assigned to present an article on a proposed computational
model published in Psychometrika by T. W. Anderson. With only
a very basic knowledge of matrix algebra, the initial reading
of this paper was, to say the least, disconcerting. However,
after much effort, the article was finally presented although
its use as the basis of a master's thesis had yet to be con-
templated. Interest was only aroused when a subsequent search
of the professional journals revealed the lack of empirical
research on this model. Perhaps the greatest impetus to fur-
ther investigation was the potential usefulness of this model
as a classification technique. Anderson's proposal avoided
difficulties inherent in the models of Lazarsfeld and Green
and an evaluation of it seemed long overdue. Specifically,

as this is one of many untested models in the psychological



literature, this study is aimed at the solution of a mystery:
Does the latent class model advanced by Anderson do what it
has been designed to do given certain conditions and, if so,
how well? Needless to say, a rigorous answer to this question
necessitates the use of the computer, a tool which is un-
doubtedly becoming increasingly more important in the test-
ing and reconstruction of existing models and theories as
well as in the formulation of new ones.

The first step to be taken was the development of a com-
puter program to carry out the specified computations. This
task was initiated in the summer of 1964; the final version
of this program (LSA5) was completed in December of the same
year. In addition, two other programs associated with this
project were developed in February of 1965. The first of
these (THEO) is essentially a matrix multiplication program
to provide the theoretical manifest matrices II* and Il which
are used as the basis of discussion in the first section of
the third chapter; the second (POPGEN) generated the theoret-
ical population of response patterns cited in the second
section of the same chapter. All programming was done in
FORTRAN II language with the exception of a random number
generator (XRECTF) which was coded in FAP; this was used to
sample from the theoretical population previously mentioned.

Perhaps the greatest difficulty encountered was the search
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for a routine to accurately determine the latent roots and
latent vectors (eigenvalues and eigenvectors) of a real non-
symmetric matrix. This search was in progress for approxi-
mately one month when an excellent program (MATVEC) was
located; this was modified and used as a subroutine in all
versions of the LSA program. Credit for the programming of
MATVEC is given to L. W. Ehrlich of the University of Texas.
The matrix inversion routine (INVERT) in LSA was extracted
from BIMDO6, one of a series of statistical programs written
by the Biomedical Data Processing Group of the University of
California at Los Angeles.

This project was made possible by support for computer
time from the University of Maryland and the National Aero-
nautics and Space Administration under grant NsG-398; the
facilities of the University's Computer Science Center were
used for all computations. The author wishes to express deep
appreciation to his thesis advisor, Dr. E. F. Heermann,
Associate Professor of Psychology, for guidance and an intro-
duction to both matrix algebra and the latent class model,
to Dr. J. M. Ortega, Research Assistant Professor of the
Computer Science Center, for assistance in the resolution of
several methodological problems, and to Drs. C. J. Bartlett
and L. O. Walder, Associate Professors of Psychology, for

serving on his thesis committee.
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CHAPTER I

THE CONCEPT OF A LATENT STRUCTURE

Rather than begin with a discussion of what latent
structure analysis is and of how it originated, an initial
example might prove to be beneficial in understanding the
material which is to follow. Suppose we have two groups of
subjects who respond to the same pair of test items, each
item measuring a single trait and having only two alterna-
tives. Table 1 gives a summary of responses as they might

appear.

Table 1

Response Patterns of Two Groups on Two Dichotomous Items

Group 1 Group 2 Total
+ - + - + -
+ | 4] 24 28 + 36 2 38 + 40 | 26 66
- 8} 48 56 - 18 1 19 - 26 | 49 75
12 72 84 54 3 57 66 75 141

It is readily noticeable that unequal numbers of subjects
are in each group and that the patterns of responding are

different. Closer inspection reveals that, in both groups,

1



the response to the first item is unrelated to the response
to the second; the probability of a positive response to
both items is equal to the product of the probabilities of
a positive response to each separate item, that is to say,
p12 = plpz. (The designation of one of the alternatives as
positive and the other as negative is an arbitrary matter.)
Merging the two groups into one (N = 141), we note that the
total group's response pattern does not exhibit the proper-
ty of statistical independence; in other words, Py5 # PyP,-
In an actual situation, only the overall pattern of re-
sponding to the two dichotomous items might be known or
manifest; the response patterns of the subgroups, although
they exist, might be obscured or latent. Thus, despite in-
dependent responding in each of the two groups in Table 1,
"clouding" results when the respondents from different
groups are brought together to form the manifest response
pattern for both items.

If a population consists of m distinct groups where
m 2 2, a latent structure exists if the responding to di-
chotomous items is independent in the probabilistic sense
within each group and if the characteristics which serve to
distingush each group are not known. These groups are for-
mally called latent classes. Setting the definition of v?

as the proportion of respondents in the o-th latent class



m
(where aglva = 1), kz as the probability that a person from

the a-th class responds positively to item i, and ﬂi as the
probability that a person from the total population res-
ponds positively to item i, the manifest response pattern
of the population can be explained or accounted for by
using the parameters for each latent class in equation form
as shown below in (1). The highest order joint manifest
probability will have K subscripts where K is the number of
items. The relationships given in (1), however, do not ex-
tend beyond third order joint probabilities for economy of

space and for reasons which will become obvious later.

mn g o
. vV A,
i a=1 i

b=
1
™

m
n.. = zvans (1)
i3 a=1 i3

m a0
= ALALA
Tiik - 21 itk
It becomes readily apparent that statistical independence
must prevail within each latent class in order for these
relationships to be valid. Briefly stating the purpose of

latent structure analysis as it will be covered in this

paper, the latent probabilities (vs and As) associated with



each class are to be estimated from the manifest probabil-
ities (ms) on the assumption that a latent structure does
indeed exist.

Having set forth this preliminary example, we shall
cover the origin and development of latent structure analy-
sis. The work of Lazarsfeld [1950] can be cited as the ini-
tial research in this area. The manifest material has, in
this original investigation and in those which followed,
consisted of qualitative dichotomies. Each element of this
material is referred to as an "item"; it may be, for exam-
ple, a dichotomous item in a questionnaire but the defini-
tion also includes a dichotomized observation of overt
behavior. An "item list"” consists of a series of items
ordered in a fixed but arbitrary way, the response to each
item being scored either positive (+) or negative (-). One
subject's response pattern is part of the manifest material
and is composed of a series of scores designated either "+"
or "-", From a sample, we may determine the proportion of
persons who respond positively to any item, pair of items,
triplicate of items, etc. or pi, Pij' Pijk’ etc. respec-
tively. These are estimates of the population values ﬂi,
"ij’ "ijk' etc. and will be used to estimate the latent
parameters.

An important part of Lazarsfeld's work is the notion



of an item trace line. Assuming that a one-dimensional con-
tinuum (x) exists and that the probability of a person's
responding positively to item i is a function of his posi-
tion on x, fi(x) represents the trace line of item i.
Theoretically, for respondents with the same value of x,
nothing else relates one item to another since the effect
of the underlying continuum has been removed; hence, the
trace line for a joint positive response is a multiplica-
tive function of the trace lines for each individual item.

This is given in equation form in (2).

fijk...(X) = fi(x)fj(x)fk(X)-.- (2)
The statistical independence expressed here is identical to
that which has been set forth previously, that is, for
those at one point on the continuum or in one latent class,
a joint positive response is the product of the probabili-
ties for each item taken separately. In reality, of course,
this condition of independence may not be fulfilled due to
random sampling error.

Since respondents are spread along continuum x, the
population may be described by a probability density func-
tion g(x) where the proportion of persons in each small

interval dx is equal to #(x)dx. Given the trace lines for



the items i, j, and k, we have

*®

w, = [mfi(x)ﬁ(x)dx .

m, . = lwfi(x)fj(x)d(x)dx , and (3a)

-]

Tijk T i

°°fi(x)fj(x)fk(x)ﬁ(x)dx .

With reference to the equations y = £(x) and y = £(x), x
represents the same latent continuum but y is used in two
different ways. In the former equation, y is the propor-
tion of people at a specific point on the continuum (those
between x and x + dx) who respond positively to an item;
this usage has been previously encountered in the defini-
tion of A. The latter equation defines y as the proportion
of people from the total population who are located at this
particular point; this may be equated to the parameter v.l
Passing from (3a) to more specific equations involving
moments of the function #(x) and assuming a linear2 trace
line model for all items to promote simplicity, a revision
of the original relationships is given in (3b).where

J d(x)dx = 1 by definition and I xkd(x)dx = Mk' the k-th
- -t



moment of the distribution y = #(x).

«©

w, = j [ag+aix]d(x)dx = I 4 (x)dx+a, J x4 (x) dx

-0

©

nij = fm[a +a’, x][a +a x]d(x)dx

oo 01 10, 1 1p 2
= a.a, dx+[a. a +tala.
ala3£w¢(x) X [alaj+alaJ]£mx¢(x)dx+aiaj£mx g (x)dx

(3b)

«©

nijk = Jm[ag+a x][a +a x][a +akx]¢(x)dx

ow -]
0 Oagj 001 010 100
alaj -md(x)dx+[aiajak+aiajak+aiajaklj x@ (x)dx+...

[a a. ak+ai g i ala a ]J X ¢(x)dx+a alakj X d(x)dx

Finally, we may reduce (3b) to the form shown in (3c) where

the weighting factors have been redefined as follows:

ao = a a = a.a.+a.a a2 = ala a0 = aoa0 0
iy - 24i%y - ' ij i“j* “ijk i%5%’
al _ a0 0 1 0a 0+a1a a0 a2 - a0 la1+alao 1 10
ijk 152723353 k' “ijk i?5%21%4% 3%’
3 111 . . . .
and a~ .. = a.a.a . After making appropriate substitutions,
ijk i ]ak

the equations in (3b) are represented as shown in (3c).
The relationships in (3) indicate the assumed ties

between the latent trace lines and population distribution



m, = a, + a,M '
i i il
0 1 2
wm,. = .. + . . + .. ’
ij alJ a13M1 alJM2 and (3c)
o= a0 1 2 3

. . T .. + . . . . -
ik T gkt Mt il T i

(on the right side of these equations) and the manifest re-
sponse patterns (on the left side). They are called ac-
counting equations because they explain or account for the
manifest parameters in terms of the latent ones. Lazarsfeld
provided a solution for the trace line parameters from the
manifest data. Since the actual computations posed do not
aid in the development of this paper, they will not be pre-
sented.

With reference to an assumed one-dimensional continuum
of ethnocentrism as an example, it might be postulated that
the positions of people distributed along this continuum
determined their probabilities of choosing the positively
designated alternatives of dichotomous items. Ideally, the
criterion for selecting items for inclusion in the item list
should be that they discriminate between various levels of
this attitude, that is, that each item have a differential
relationship to the underlying continuum. Using a linear

model, two hypothetical trace lines and the joint response



Figure 1
Hypothetical Trace Lines of Two Items in a Test

of Ethnocentrism

0.4 item 1

.1 ~______‘~ item 2

~Jjoint

- ethnocentrism +»

trace line (dashed line) are shown in Figure 1. It is obvi-
ous that as a respondent's degree of ethnocentrism becomes
greater, the probability of a positive response to item 1
increases while that to item 2 decreases. As was pointed out
earlier, the critical assumption of the latent structure
model is that responding to the items is independent for
each small interval between x and dx on the continuum, that
is, that joint relationships among items are completely ex-
plained by the relationship of each item to the latent con-
tinuum. As is shown by (2), the probability associated with

each point on the joint response trace line is equal to the
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product of the probabilities associated with the correspon-
ding points on the item trace lines; for any specific value
of x, p12 = plpz. Restating what has been previously estab-
lished, the purpose of latent structure analysis as derived
by Lazarsfeld is to estimate the latent parameters of the
item trace lines.

A distinction should be made between the latent struc-
ture model as given in the preceding summary of Lazarsfeld's
work and the latent class model which is an extension of it.
An assumption of the latent structure model is local inde-
pendence, that is, that persons at the same position on the
underlying continuum x respond independently to different
items. The latent class model also assumes local indepen-
dence but, in addition, postulates that the population of
respondents can be represented by a finite number of points
or classes on the continuum or, in other words, that &(x)
is discrete. Therefore, every person in the population can
be placed in one of several distinct groups which vary as
to their position on x. This may be considered as a simpli-
fying condition and the latent class model can be viewed as
a special case of the latent structure model. It may now be
pointed out that the example given at the beginning of this
chapter was concerned with the latent class model and that

the relationships in (1) are finite accounting equations for
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m groups oOr points on the continuum x.

It is apparent that the latent class model could have
been developed without utilizing the concepts of latent con-
tinuum and item trace line.3 All that is necessary is the
assumption that m subgroups or latent classes exist and that
they possess the properties of intra-class statistical inde-
pendence and inter-class uniqueness. Thus, the classes need
not necessarily be ordered along a continuum and, as a re-
sult, the latent class model becomes even more general with
respect to the situations to which it might be applicable.
For the remainder of this paper, we will be occupied with
the latent class model conceived in this manner. Although
latent structure analysis originated as a technique in at-
titude measurement, it is interesting to note that its po-
tential usefulness in other areas of psychological research
was initially recognized by Lazarsfeld [1950, p. 365]. "No
limitation is set on the kind of dichotomies which can be
used. It would not change the theory, for instance, if some
of the items were observations to the effect that each per-
son did or did not perform a certain act or own a certain
object." We should therefore keep in mind that the material
to follow is easily generalized to any area where responses

can be reduced to binary patterns.



CHAPTER II
THE LATENT CLASS MODEL

Stemming from the work of Lazarsfeld, solutions for the
latent class model have been derived by Green [1951] and
Anderson [1954]. As these are closely related to the present
research, it is necessary that they be covered in detail in
this chapter.

Green proposed a solution which was dependent upon man-
ifest probabilities of the first, second, and third orders
only.4 For each of m latent classes, the proportion of the
population in class s is equal to ns (sglns = 1) and the
probability that a person in class s will respond positively
to item i equals viS where s = 1, 2, ..., m and, r being the
total number of items, i = 0, 1, ..., r. The accounting

equations of Green's procedure are

o]
n
™M

] n v, '
i s=1l's is

m

. . T.n v, V. , and (4)
ij s=1 s is Js

m
Pijk = s217sVisVis ks

12
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It should be noted that the relationships in (4) are identi-
cal in meaning to those in (1).
The following matrices are used by Green in the devel-

opment of his solution. P_ is given as a symmetric matrix of

0

order r+l which consists of manifest proportions. The ele-
ments in the first row and the first column are the first

order probabilities and are referred to as "manifest margin-

als" or, more simply, as "marginals" since they border this

matrix. The remainder of PO is made up of the second order

probabilities for all possible combinations of items. Pk is

a matrix of similar structure in which the k-th item is used
as a "stratifier"; the choice of this item determines which

third order probabilities become elements of P The mani-

X"

fest matrices P0 and Pk are defined in (5) and (6). As to

p = |P2 Pa1 Py -+ Pyy (5)

p Prig Pyy - Prr

the structure of these matrices, double subscripted elements




14

in P_ are abbreviated such that, for example,

0 = 1 and

Poo

Pig = P;i triple subscripted elements in b, are shortened in

Py Pix Pox oo Prx -0 Prx
Pix  Prix Piox - Pixx - Pirk

Pox  Poix Paox - Pakx -0 Pork

Pk = |. . . :. . (6)

Prr  Prix Prox o Prxx " Prrk

Prxk Prix Praxk "o Prkk 7 Prrk

a similar way, that is, POOk = pk and pOjk = pjk' Thus, sub-
scripts are suppressed for clarity when i and/or j is equal
to zero.

It should be pointed out that, although PO and Pk are

m
.. = Y.nyv,
ii s=1l"s 1is

m

' (7)

‘s Z.n v, V.
iij s=1's is Js

m
= X

3 etc
Prxk = s21%sks ¢ .
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considered to be manifest data matrices, they do contain
elements which cannot be directly computed from observed re-
sponse patterns. Due to the way in which these matrices were
formed, some entries will have recurring subscripts as shown
by (7). These parameters, as we will see, become a major
problem in Green's solution of the latent class model.

In addition to the matrices of manifest parameters, the
latent parameters are also given in matrix form. The propor-
tion of the population in each latent class becomes a diag-
onal entry of the matrix N which is necessarily of order m

and is represented as

n1 0 ees O
0] n2 .o O
N = - (8)
0 0 eee N
| m

The item probabilities for each latent class are elements of
the (r+l1l) X m matrix L as given by (9). The first row of L
is used to represent a dummy item, that is, vOS = 1; its in-
clusion in L is a prerequisite for the derivation of Green's
solution. The latent parameters associated with a single

item or, in other words, the entries in a single row of the



11 ce. 1
Vit V12 > Vinm
V21 V22t Von

L= :
)1 k2 0 Vkm
_rl Vr2 PP Vrm-

16

(9)

matrix L, are also specified as the elements of a diagonal

matrix of order m. Thus, for item k, we have

vkl 0 ... O

0 vk2 ..o O
Dy = 1. . .

0 0 e vkm

. p

Using PO' Pk' N, L, and Dk

(10)

and assuming that the conditions

in (4) are fulfilled, it is possible to establish accounting

equations in matrix form which relate the manifest and la-

tent matrices. These are expressed by (11) and (12).
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T
@ P, = LNL (11)
P, = LND L (12)

Since the use of Dk results in third order probabili-
ties stratified only by item k, all probabilities of the
third order can be accounted for by considering r-1 similar

matrices, one for each of the remaining items. Substituting

each of these in (12), we have r-1 additional Pk matrices.

This leads us to the definition of D(l) and P(l) as follows:
. § D d (13)
Dy = k&1Px 23"

r

z

Pay = k&ifx

(14)

Accounting for all possible third order probabilities simul-

taneously, we may replace (12) by
= LND,.,L . (15)

Having established the accounting equations of Green's

' solution in (11) and (15), we may relate the present model
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. to that of Lazarsfeld. The latter was concerned with the
calculation of trace line parameters, that is, the probabil-
ity of a positive response to items for persons at different
positions on a latent continuum. The goal of the former is
to determine the elements of N and L or, more specifically,
to estimate the proportion of the population in each latent
class and, for those in each class, the probability of re-
sponding positively to each item. The difference between the
two models is the assumption of a point versus a continuous
distribution of respondents.

Because N is a diagopal matrix, (11) can be written as

% [N%]T.

shown in (16) where N° =

P, = it = [on?) Ny T (16)

Factoring P_. results in a new matrix as given by

0
P_ = BB . (17)

%

The matrix B differs from LN® in (16) by an orthogonal

transformation such that

LN

BAb (18)
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T, _ . .
where AbAb I. With reference to (15), P(l) may be revised

as follows:

P(l) = [LN!E]D(l) [LN!E]T . (19)
Combining (18) and (19),
Py = [BAb]D(l)[BAb]T = BAbD(l)AEBT . (20)
Defining the matrix Q, we have
e = AbD(l)Ag (21)
and therefore,
P = poT . (22)

Premultiplying by BT and postmultiplying by B, (22) is modi-

fied to the form

T T :
B P B = B BOB B 23
(1) e (23)
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where a solution for Q gives

1T

Q= [BTB]' B P 1

T -
(1)B[B B] . (24)

From (24)5, we can determine Q and, using this matrix,
D(l) and Ab. D(l) is a diagonal matrix of the latent roots
of Q and Ab, a matrix of the latent vectors; these three ma-
trices are related as shown in (21). With B and Ab known, N
and L can be determined. By referring to (18), the entries
in the first row of BAb are equal to the square roots of the
diagonal elements in N éince the first row of L represents a
dummy item, all entries being equal to unity. After N has
been found, L is readily available. The main restrictions on
this solution are that L be of rank m and that each diagonal

element of D be non-zero and different from all others.

(1)
In order to eliminate the excessive computations inher-
ent in this method as well as the troublesome estimation of
manifest probabilities with recurring subscripts, Anderson
modified Green's procedure to what may be called an asymmet-
ric approach since all the manifest data is not utilized.
Reference is made to the situation in which K dichotomous

items are responded to.6 The proportions of people in the

population who respond positively to item i, items i and jJ,
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and items i, j, and k are denoted by T nij' and nijk in
that order. For each of m latent classes, the proportion of
respondents in class a is equal to v¥ where o = 1, 2, ..., m
and the probability that a person in class o will respond
positively to item i is equal to k:. The manifest ms are
functions of the latent vs and As and are related as shown
in (1). The similarity between the two solutions becomes
evident with the recognition that the accounting equations
of Anderson and Green (given by (1) and (4) respectively)
specify identical relationships. The difference arises from
the restriction imposed by Anderson which is that all mani-
fest parameters to be used in his solution have nonrecurring

subscripts. The derivation of Anderson's procedure follows.

Defining the m x (K+l) matrix A, we have

- -
1 1 1
1 Xl kz .ee XK
2 2 2
1 ll AZ .- AK

A= (25)
m ,m m
1 ll Kz ce kK

where, from the previous definitions, classes are referred

to by superscripts and items, by subscripts. Following what
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was done by Green, a dummy item is defined such that kg = 1.
Al is given as an m X m matrix formed by the first m columns
of A; A2 has the same dimensions and consists of the first
column and the next m-1 columns of A not utilized in the

formation of Al. These matrices are represented as follows:

q
1 1 1
! MR s
2 2 2
1l Xl 12 e lm—l
Al = and (26)
m m m
L} kl lz .. Am-l
B 1 1 1]
1 xm xm+l T 2m-2
2 2 2
! e
= . 27
A, (27)
m m m
1 xm Am+l °t T x2m—2

Choosing an item not used in the construction of either Al
or A2, we have the m x m diagonal matrix A as shown by (28).
It should be noted that, from the total set of K items, two

subsets of m-1 items plus one additional item have been
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A= (28)

0 0 R

m
k

selected, the extra item serving as a stratifier. Thus, K
must be equal to or greater than 2m-1l. Of course, there is
no way to check this since the number of latent classes is
not known. Specifying the last matrix of latent content, we

have

vl 0 ... O
2
4] v .. 0
N = - (29)
0 0 I

Each diagonal element of N represents the prcbability that
a respondent drawn randomly from the population is from the
corresponding latent class; N is therefore of order m.

In solving for the latent values, we utilize the mani-

fest parameters ni, nij' and nijk where i = 0, 1, ..., m-1,
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0, m, m+l,

e o o ¢

2m-2,

24

and k is a fixed subscript for the

stratifying item. The m X m matrices of manifest content are

defined in (30) and (31). Subscripts

1 m
m
™ "in
T Tom
T
"m—l m-1,m
ha s
Ty mk
b
1k 1mk
ok Tomk
TTm--l,k T'm—l,m,k

h—

m+1l
m
l,m+1

i
2,m+1

T
m-1,m+1l

m
m+l,k

™
1,m+1l,k

m
2,m+1,k

m
m-1,m+1l,k

m
2m-2

m
1,2m-2

m
2,2m-2

o
m-1,2m-2

o
2m-2,k

m
1,2m-2,k

A1
2,2m-2,k

m
m-1,2m-2,k

equal to zero have been

(30)

(31)

suppressed. Due to the way in which II* and N1 were formed,

the problem of elements with recurring subscripts has been

eliminated. Using the matrices of manifest and latent con-

tent, the accounting equations in the solution given by

Anderson are presented in (32) and (33). To promote clarity,
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T
* =
I AlNA2 (32)
T = ATNAA (33)
1 2
T
AlNA2 = (34)
Zvaka Zvaka Zvdka i
m m+1l 2m-2
o.a. o o, o, o o o o
pY )‘lxm pXY] xl)‘m+1 v )‘l)‘Zm-Z
a. .o, o . Q.o o, o, o
v )\zkm v )‘2)\m+l v )‘2)‘2m—2
a, o a o, o o .o a
Zv km—l m Zv )‘m—l m+l Zv )‘m—l 2m-2
(35)
. Q.o . @ L .o o 7
v )‘m)‘k Tv )‘m+l)‘k v AZm—Z X
.o, o o o, Qo o o, o, o
v )‘l)‘mxk v )‘lhm+l)‘k v )‘lem—z)‘k
.o, o, o, o oo, o
v )‘kakk v )‘21m+1>‘k v )‘2)‘2m—2)‘k
a, o a o, o oo a a
2vidiatatk BV Anoitmeatx Zv Ay 1t am-2Mk]
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T

ATNA2 and AlNAA2 have been generated in (34) and (35).7 By

1
inspecting the elements in these product matrices, it is ap-
parent that the condition of statistical independence postu-
lated in (1) is basic to Anderson's solution. The derivation
of Green could similarly have been shown to be dependent on
the relationships in (4).

The initial step of Anderson's procedure is to find the

latent roots of the determinantal equation
In - e%n*| =0 . (36)

A, and N be nonsingular,

1’ 72
. . . 1 2 m
the diagonal entries of A (symbolically, Kk' Ak, cees kk)

Imposing the restriction that A

can be equated to the roots of (36) by noting that

T

H (37)

0 = |ATNan, - 6%] |-|N|-]a - o%z|-]A

2 M, = A

2I )
With a knowledge of the latent roots (A) and the matrices of
manifest parameters (II* and 1I), we shall proceed to deter-
mine the remaining latent parameter matrices, that is, Al,

A and N.

2'
From (36), [0 - o%m*] is singular. A latent (column)

vector x¥ exists (excluding the null vector) such that the

relations in (38) are true. If the roots are different, each
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[n - e%n*1x¥ = o or mx% = e¥mx? (38)

vector is unique. The elements in a specific vector may be
altered by multiplying them by a scalar but any such multi-
plicative transform of x¥ will not affect (38). Establishing
the roots as entries in the diagonal matrix © and the vec-
tors as columns in the matrix X, we have in (39) a summary

of the a equations represented by (38). It is required that

IIX = [*Xe (39)

the latent roots of (36) be different from each other to
avoid difficulties inherent in the use of (39).

Assuming that 6 = A by an identical ordering of the

roots, a possible solution for X in (39) is A2 . This is

shown, after making appropriate substitutions, by

T _ ,T -1
AlNAAz 5 = AlNA2A2 A .

(40)

. . -1
Rather than state without exception that X = A2 , we must

take into account the near certainty that the latent vectors
. -1
in X will be equal to transforms of the columns in A2 . De-

fining Ex as a diagonal matrix, each element being the re-

ciprocal of. the scalar which transformed the corresponding
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vector in X, the relationship between X and A;l is given as

X = A2 Ex . (41)
Solving (41l) for Az, we have
_ -1
A2 = EXX . (42)

Since the elements in the first column of A2 must all be
equal to unity as specified in (27), each diagonal entry in
Ex must be the reciprocal of the corresponding element in
the first column of X—l.

From (38), transposition of the matrices of manifest
parameters gives

[n - 6%m*1Ty% = o or 1Ty® = o%m Ty (43)

where the equations corresponding to (32) and (33) are

m*T = AgNAl and (44)
0t = A§NAA1 ) (45)

Referring to (36), latent roots and vectors of the matrix
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-1 . .
NI* "I were previously determined; now, after transposition,

. .. . T--1_T .
this matrix is revised to the form [I* ] "I . As can be in-
ferred from the notation in (43), the roots of this new ma-
trix are identical to those of the old but the vector asso-
ciated with each root changes. The former is true since the
characteristic equations of these matrices are exactly the

same; the latter is true because there has been a change in

matrix structure. Following the same line of reasoning as

was used before, (46) and (47) equate Y with A;l.
1y = m*Tve (46)
AgNAAlAIl = AgNAlAzlA (47)
The general solution for Y is given by
Y = AIlEy (48)
and, solving for Al, we have
Ay = EyY_l . (49)

The final steps in the solution for the latent matrices

A A and N are accomplished in the following manner. With

1 72!
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reference to (32) and (41l), we can establish that

mex = [ATNAJ0AS'E ] = ATNE (50)
and similarly, from (32) and (48),
n*Ty = [AgNAl][AIlEy] = A';NEY . (51)
Hence,
A"lE = mx[vE 17! ana (52)
. X
Ag = H*TY[NEyJ_l . (53)

Since the first row of both A{ and Ag consists entirely of
ls, the diagonal elements of NEX and NEY are equal to the
entries in the first row of II*X and H*TY respectively. It
should be brought to mind that NEx and NEY are diagonal ma-
trices and that the inverse of each is a diagonal matrix in
which the elements are simply the reciprocals of those in
the original matrix. Thus, it could have also been stated
that the diagonal entries of NE;l and NE;l are the recipro-
cals of the entries in the first row of I*X and H*TY in that

order. Having found Az and Ag in (52) and (53), Al and A2
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are easily determined, NE;]' and NE;l being by-products of
computation.
N is now the only latent matrix to be defined in terms

of known matrices. Referring to (41) and (48), we note that

-
>
Il
=
-
m
"
9
]

N'l[NEX] and (54)

S S |
ALY AlAl Ey EY N [NEy] . (55)

Having already found NEx and NE;l, either of these may be

-1 .
used to compute N since, from (54) and (55),

-]
il

-1
AZX[NEX] and (56)

-1
Aly[NEyJ . (57)

2
It

The reciprocals of the diagonal elements of N-l are the di-
agonal elements of N.

At this point, we have covered the method given by
Anderson for the derivation of the matrices of latent con-
tent; the data consisted of manifest parameters for which
the conditions specified in (1) are perfectly fulfilled. In
practice, however, we can only estimate the true manifest

values. For example, the manifest data matrices NI* and II are
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error-free, that is, they are reproduced perfectly by ATNAZ
and A']I_,NAA2 respectively. On sampling from the population,
the data matrices P* and P will not be completely accounted
for by the product matrices mentioned above since the sample
will be in error to some degree. This does not invalidate
the latent class model because any method of estimation is
used and qualified in light of random fluctuations in the
data. However, we should realize that P* # [I* and P # II. The
relationships associated with any application of Anderson's

method (assuming that latent classes do exist) are similar

to (32) and (33) as shown by

T
* = + = * 4
P* = AJNA, + E| = I* +E  and (58)
P=ANM_ +E. =1 +E . (59)
1NaA, * B, 2

El and E2 are m X m error matrices. Since this solution will

only approximate the latent matrices from contaminated mani-

fest matrices, equations of a more general form are given in

(60) and (61) where Ll' L2' &, and D are estimates of Al, Az,
TA
* = 60
P L]NL, (60)
Ta\
P = L:NDL (el)




N, and A in that order. More will be said about (60) and

(61) in the next chapter.
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CHAPTER III
THE SENSITIVITY OF THE METHOD

To the present time, the latent class model of latent
structure analysis has never undergone an empirical test.
The work of Green followed by that of Anderson prompted sev-
eral writers as Gibson [1955] and McHugh [1956] to suggest
ways of improving the method but, again, demonstrations con-
cerning practical applications of the original procedure
and/or its revisions are ponexistent. In this chapter, we
will cover an investigation of the sensitivity of latent
class analysis to error in the manifest data matrices. The
specific method to be tested will be that of Anderson since,
in the opinion of the author, the effect of random error on
estimates of the latent parameters will be less with this
procedure than with that of Green.

It is assumed that the absence of empirical work with
latent class analysis is due to the excessive and complex
computations inherent in all variations of this technique.
This barrier can be minimized by the use of an electronic
digital computer. A computer program (in FORTRAN II lan-
guage) has been written to carry out the computations given

. . 8
by Anderson in his solution. Thus, we have the means to

34
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make this investigation feasible. In line with computer uti-
lization, it should be noted that Anderson's derivation of
the latent parameters involves matrix manipulations which
were formulated primarily to facilitate hand calculation.
Since this barrier has been eliminated, several modifica-
tions have been made in his procedure. This revised method
will now be presented; statistics rather than parameters are
used in these equations.

The first major computation by the program concerns a
solution for the latent roots, that is, the diagonal entries
of D. From (36), we have the eguivalent form

b ¥ =0 . (62)

|p*
The matrix P*-lP is computed and its roots are determined.
Similarly, with reference to (38), corresponding forms are

given by (63). The latent vector id is found after the solu-

1 PN

- _l a
[p* P - t%118% = 0 or [p* "P1R% = t%% (63)
tion for the root tq.

Because X and ¥ are derived from the same manifest ma-

»N
trices, they are related to one another. The solution for ¥

from X is expressed in (64). The validity of this can be
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A _r2a-1 1.7 -1
¥ =[xpr 1T = 17rxTt (64)
confirmed by substituting (64) in (46); the result is shown

in (65). Observe that (65c) is of the same form as (39). The

T _l T ‘\T -l - ~ -
pT e+ 11771 = e Tre+ 1T T YD (65a)
% 1p+7lp = pg lpslps (65b)
PX = P*XD (65¢)

latent matrices L, and L, are related to X and ¥ as shown by

(42) and (49) respectively. By dividing the elements in each
row of i_l by the first element in that row, the entries in

the first column of the resulting L, matrix are all equal to

2

. . R -1 .
unity as defined. Using § in the same manner, Ll can be

determined. From (64), we can derive Q-l directly as has

been done in (66) and therefore, Y need not be computed. The

% = [p*T771[xT17L (66a)
¢ = %TpaT (66b)

= [p*2]1T (66¢c)
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-1

2 (67)

N = [LT]-lP*L

solution for N is derived from (32) and given by (67). At
this point, the revision of Anderson's method for computing

the matrices Ll' L2, D, and N has been presented.

1. Introduction of Error into II* and II

The discussion will now be centered on a description of

- ——
1 0.9 0.2
A =2 0.7 0.9
1 0.1 0.1
1 0.8 0.4 |
= 0. 0.8
A, 1 4
1 0.3 0.3 |
(68)
(0.3 0 0 7]
N=1]o 0.5 0
0 0 0.2 |
0.9 0 0 B
A=]o0 0.5 0

0 0 0.1




38

the procedure by which the latent class model was tested for
sensitivity to error in the manifest data matrices. This
could not have been accomplished on the theoretical level;
rather, the only approach to the problem was an empirical
one. Utilizing (32) and (33), we can generate the manifest
matrices from latent givens. In the present investigation,
the number of latent classes is set at three or, in other

9

words, m = 3.

The initial step taken was the specification of A A

1" 2!

N, and A. All of these matrices were established by using
the theoretical structure given by Anderson in his article;

they are defined in (68). The product matrices II* and II are

shown in (69).10

Note that, in (68) and (69), elements are
[1.00000 0.50000 0.58000]
I* = |0.64000 0.36200 0.39400
0.53000 0.23400 0.39000
0.54000 0.32200 0.31400
I =|0.42000 0.26500 0.23780
0.28100 0.13380 0.20220

specified as population values.

The computer program written to

perform the operations
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given by Anderson may now be applied. To restate the purpose

of these computations, we wish to obtain estimates of Al,
A., N, and D (namely Ll’ L

2’ 2’

N, and D) from P* and P which

are estimates of II* and II respectively. By beginning with

error-free P* and P matrices,

that is, matrices which are

identical to II* and Il as given in (69), we can state that

discrepancies between the estimated matrices and those in

(68) result from the operations performed. With this in mind,

2

"1.00000

1.00000

1.00000

Fl.ooooo

1.00000

1.00000

0.20000

-0.00000

0.00000

0.10000

0.10000

0.70000

0.90000

0.30000

0.40000

0.80000

-0.00000

0.50000

-0.00000

0.10000
0.90000

0.20001

0.30000]

0.80000

0.40000

-0 .00000]

-0.00000

0.30000

0
0

0.90000

(70)
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reference is made to the computed matrices in (70). Two ob-
servations should be made; the first is that the first and
third rows of the matrices in (68) have been interchanged in
(70) . This can be explained by referring té (40) where it
was assumed that 6 = A. While this supposition was involved
in the derivation of the method, it need not be fulfilled in
the utilization of it. In the present example, the order in
first, 4

which the latent roots were computed (d second,

11 22

etc.) does not correspond to the order in which they were
set up in A. Expressing this differently, while d22 = 622,

dll = 633 and d33 = 611. The second observation to be made
concerns the fact that tﬁe theoretical and computed matrices
differ only in one element, Ll(3,3)' It could be shown that
the displacement of rows does not affect computational accu-
racy. Thus, the small discrepancy noted above is not due to
a row interchange but, instead, might be attributed to the
complexity of computations involved as, for example, in la-
tent root determination. We must conclude that computations
are performed with sufficient accuracy to provide good esti-
mates of the latent parameters from error-free manifest ma-
trices.

For checking the accuracy of computations, the product

of the estimated latent matrices is given in (71). This ma-

trix is identical to @I as shown in {69) and is evidence
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0.54000 0.32200 0.31400

LifpL. =

1 5 0.42000 0.26500 0.23780 (71)

0.28100 0.13380 0.20220

that, although the estimates are slightly discrepant, compu-
tations are sufficiently accurate to make possible reproduc-
tion of the original data matrix lI. The matrix L{ﬁLz was not
chosen for checking purposes since P* was used to estimate N
as shown by (67).

In order to test the sensitivity of the latent class
model, error will be introduced into the manifest matrices
in accordance with the relations given in (58) and (59).

Randomly varying the elements of II* and I in the fifth deci-

mal place, we have

1.00000 0.49996 0.57995

P* = |0.64003 0.36192 0.39409
0.53007 0.23399 0.38996

(72)

o —
0.53998 0.32195 0.3139%4

P = |0.41996 0.26505 0.23782
0.28103 0.13379 0.20222

Estimates of the latent matrices from P* and P as shown by



(1.00000

L, = | 1.00000

1.00000

[1.00000

L, =11.00000

1.00000

[0.20093

& = |-0.00000

Ep.ooooq

0.10192

D=]0

Lp

0.10130

0.70075

0.90087

0.30123

0.40010

0.80122

-0.00000

0.50059

-0.00000

0

0.50028

0

0.10075 |

0.89937

0.19970

0.30033

0.79975

0.39954

0.00000

-0.00000

0.29847

0

0]

0.90147
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(73)

(72) are given in (73). Comparison of these estimates with

those in (70) reveals a very close correspondence. Again,

checking the accuracy of computations results in a perfect

T

reproduction of P; LlfIDL2
0.53998
LTfon. = | 0.41996

17 2 7 :

0.28103

0.32195

0.26505

0.13379

is represented in (74).

0.31394

0.23782

0.20222

(74)
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A more significant change will now be made in I* and ;

elements in these matrices are to be varied randomly in the

fourth decimal place. The new manifest matrices are estab-

lished as

P* =

Ll' L2,

1.00000

0.64030

0.53070

[0.53980

0.41960

0.28130
b

0.49960

0.36120

0.23390

0.32150

0.26550

0.13370

0.57950]

0.39490

0.38960

0.31340]

0.23800

0.20240

and

(75)

ﬁ, and D as computed from the current P* and P data

matrices in (75) are given in (77). The differences between

these estimates and those in (70) have become greater in

magnitude with error introduced in the fourth decimal place.

However,

all estimates remain close to the true values.

Finally, a perfect check on the computational accuracy re-

sults as is shown by (76).

T
Ll&DLZ =

0.53980

0.41960

0.28130

0.32150

0.26550

0.13370

0.31340

0.23800

0.20240

(76)
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[1.00000 0.11291 0.10777
L, 1.00000 0.70750 0.89403
| 1.00000 0.90895 0.19712
[1.00000 0.31219 0.30332
L, 1.00000 0.40097 0.79774
| 1.00000 0.81243 0.39541
(77)
0.20955 -0.00000 -0.00000
N = |-0.00000 0.50552 -0.00000
0.00000 -0.00000 0.28492
0.11901 0 0
D 0 0.50275 0O
0 0 0.91501

All of the results previously presented concerning the
sensitivity of the latent class model with m = 3 are summa-
rized in Tables 2, 3, and 4 in a form similar to that used
by Anderson for reporting estimated structures. Arbitrarily
grouping the five items necessary for the solution according
to the specifications of this model, we have items 1 and 2
in the first set, items 3 and 4 in the second set, and item

5 as the stratifier.




Table 2

Latent Probability Estimates from Manifest Matrices
(error-free)

Classes 1 2 ' 3

Proportions 0.20000 0.50000 0.30000

Item 1 0.10000 0.70000 0.90000
Item 2 0.10000 0.90000 0.20001
Item 3 0.30000 0.40000 0.80000
Item 4 0.30000 0.80000 0.40000
Item 5 0.10000 0.50000 0.90000

Table 3

Latent Probability Estimates from Manifest Matrices
(random error introduced in the fifth decimal)

Classes 1 2 3
Proportions 0.20093 0.50059 0.29847
Item 1 0.10130 0.70075 0.90087
Item 2 0.10075 0.89937 0.19970
Item 3 0.30123 0.40010 0.80122
ITtem 4 0.30033 0.79975 0.39954
Item 5 0.10192 0.50028 0.90147

Table 4

Latent Probability Estimates from Manifest Matrices
(random error introduced in the fourth decimal)

Classes 1 2 3
Proportions 0.20955 0.50552 0.28492
Item 1 0.11291 0.70750 0.90895
Item 2 0.10777 0.89403 0.19712
Item 3 0.31219 0.40097 0.81243
Item 4 0.30332 0.79774 0.39541
Item 5 0.11901 0.50275 0.91501
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2. Sampling from a Theoretical Population

With reference to the previous introduction of error
into the manifest matrices, we must consider the possibility
that the random alteration of the manifest parameters may
not have been consistent with the nature of the data. The
elements of II* and II are probabilities of positive response
to single items and joint probabilities of positive response
to more than one item. Since these will be related, one might
question the appropriateness of the changes made and there-
fore the validity of the results.

The ideal method for testing the sensitivity of the la-
tent class model to erroneous pi, pij' and pijk values would
be to simulate the actual sampling situation. To this end, a
population of respondents has been generated for which m = 3,
N = 100,000, and, as before, latent parameters correspond to
those used by.Anderson. The characteristics of each class are
given in Tables 5, 6, and 7. Twenty samples of 1,000 subjects
were randomly drawn from this theoretical population. Analy-
sis of the data resulted in only fourteen acceptable solu-
tions.13 These structures are summarized in Tables 8-21; by
comparing these with the estimated probabilities in Table 2,
it is apparent that the accuracy of estimation has decreased

from that in the previous demonstration. Even with samples
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Table 5

Characteristics of First Theoretical Latent Class

Probability of Positive Response

Item 1 0.9 Item 3 0.8 Item 5 0.9
Item 2 0.2 Item 4 0.4
1l .o .
Response Probability Frequency Cumulative
Pattern of Occurrence in Class Frequency
00000 0.00096 29 29
00001 0.00864 259 288
00010 0.00064 19 307
00011 0.00576 173 480
00100 0.00384 115 595
00l01 0.03456 1037 1632
00110 0.00256 77 1709
00111 0.02304 691 2400
01000 0.00024 7 2407
01001 0.00216 65 2472
01010 0.00016 5 2477
01011 0.00144 43 2520
01100 0.00096 29 2549
0l1l01 0.00864 259 2808
01110 0.00064 19 2827
01111 0.00576 173 3000
10000 0.00864 259 3259
10001 0.07776 2333 5592
10010 0.00576 173 5765
10011 0.05184 1555 7320
10100 0.03456 1037 8357
10101 0.31104 9331 17688
10110 0.02304 691 18379
10111 0.20736 6221 24600
11000 0.00216 65 24665
11001 0.01944 583 25248
11010 0.00144 43 25291
11011 0.01296 389 25680
11100 0.00864 259 25939
11101 0.07776 2333 28272
11110 0.00576 173 28445
11111 0.05184 1555 30000
1.00000 30000




Table 6
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Characteristics of Second Theoretical Latent Class

Probability of Positive Response

Item 1 0.7 Item 3 0.4 Item 5 0.5
Item 2 0.9 Item 4 0.8
12 s .
Response Probability Frequency Cumulative
Pattern of Occurrence in Class Frequency
00000 0.00180 90 30090
00001 0.00180 20 30180
00010 0.00720 360 30540
00011 0.00720 360 30900
00100 0.00120 60 30960
00101 0.00120 60 31020
00110 0.00480 240 31260
00111 0.00480 240 31500
01000 0.01620 810 32310
01001 0.01620 810 33120
01010 0.06480 3240 36360
01011 0.06480 3240 39600
01100 0.01080 540 40140
01101 0.01080 540 40680
01110 0.04320 2160 42840
01111 0.04320 2160 45000
10000 0.00420 210 45210
10001 0.00420 210 45420
10010 0.01680 840 46260
10011 0.01680 840 47100
10100 0.00280 140 47240
10101 0.00280 140 47380
10110 0.01120 560 47940
10111 0.01120 560 48500
11000 0.03780 1890 50390
11001 0.03780 1890 52280
11010 0.15120 7560 59840
11011 0.15120 7560 67400
11100 0.02520 1260 68660
11101 0.02520 1260 69920
11110 0.10080 5040 74960
11111 0.10080 5040 80000
1.00000 50000
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Table 7

Characteristics of Third Theoretical Latent Class

Probability of Positive Response

Item 1 0.1 Item 3 0.3 Item 5 0.1
Item 2 0.1 Item 4 0.3
12 o .
Response Probability Frequency Cumulative
Pattern of Occurrence in Class Frequency
00000 0.35721 7144 87144
00001 0.03969 794 87938
00010 0.15309 3062 91000
00011 0.01701 340 91340
00100 0.15309 3062 94402
00101 0.01701 340 94742
00110 0.06561 1312 96054
00111 0.00729 146 96200
01000 0.03969 794 96994
01001 0.00441 88 97082
01010 0.01701 340 97422
0l01l1 0.00189 38 97460
01100 0.01701 340 97800
01101 0.00189 38 97838
01110 0.00729 146 97984
0111l 0.00081 16 98000
10000 0.03969 794 98794
10001 0.00441 88 98882
10010 0.01701 340 99222
10011 0.00189 38 99260
10100 0.01701 340 99600
10101 0.00189 38 99638
10110 0.00729 146 99784
10111 0.00081 16 99800
11000 0.00441 88 99888
11001 0.00049 10 99898
11010 0.00189 38 99936
11011 0.00021 4 99940
11100 0.00189 38 99978
11101 0.00021 4 99982
11110 0.00081 16 99998
11111 0.00009 2 100000

1.00000 " 20000
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of 1,000 subjects, II* and 1 have been distorted more than
when changes were made in the fourth and fifth decimals of
the entries in these matrices. Thus, the solution is at least
moderately affected by sampling error. In order to completely
cover the implications of these results, however, discussion
must be delayed until the next chapter where the character-

istics of the solution will be examined in depth.

Table 8

Latent Probability Estimates from Manifest Matrices

(sample #1)

Classes 1 2 3
Proportions 0.25051 0.49930 0.25020

Item 1 0.22279 0.62094 0.94462

Item 2 0.05784 0.94220 0.17501

Item 3 0.34056 0.35871 0.83588

Item 4 0.31611 0.79835 0.36436

Item 5 0.16738 0.58903 0.91032

Table 9

Latent Probability Estimates from Manifest Matrices

(sample #2)

Classes 1 2 3
Proportions 0.20865 0.46393 0.32742

Item 1 0.18225 0.66844 0.90667

Item 2 0.12021 0.93936 0.32717

Item 3 0.36257 0.38568 0.74651

Item 4 0.32205 0.78807 0.45262

Item 5 0.06177 0.50522 0.97343




Table 10

Latent Probability Estimates from Manifest Matrices

(sample #3)
Classes 1 2 3

Proportions 0.18197 0.42183 0.39621
Item 1 0.09098 0.73922 0.85433
Item 2 0.13281 0.83976 0.29696
Item 3 0.29563 0.27966 0.77426
Item 4 0.24362 0.90087 0.43442
Item 5 0.00476 0.46113 0.82974

Table 11

Latent Probability Estimates from Manifest Matrices

(sample #5)
Classes 1 2 3

Proportions 0.19300 0.48528 0.32173
Item 1 0.05548 0.68052 0.91573
Item 2 0.13469 0.89786 0.26121
Item 3 0.21257 0.41923 0.75913
Item 4 0.27272 0.85847 0.40982
Item 5 0.07594 0.46449 0.87734

Table 12

Latent Probability Estimates from Manifest Matrices

(sample #6)

Classes 1 2 3
Proportions 0.20363 0.49196 0.30442

Item 1 0.12190 0.73633 0.78392

Item 2 0.12877 0.90856 0.13397

Item 3 0.27262 0.40009 0.79987

Item 4 0.24929 0.81133 0.31233

Item 5 0.05693 0.50249 0.86145




Table 13

Latent Probability Estimates from Manifest Matrices

(sample #10)

(sample #8)
Classes 1 2 3
Proportions 0.23676 0.37282 0.39043
Item 1 0.20838 0.72637 0.77572
Item 2 0.27874 0.88494 0.27171
Item 3 0.21724 0.36404 0.77824
Item 4 0.32601 0.95532 0.37050
Item 5 0.04869 0.53248 0.83999
Table 14
Latent Probability Estimates from Manifest Matrices
(sample #9)
Classes 1 2 3
Proportions 0.20870 0.42491 0.36640
Item 1 0.17913 0.66500 0.89134
Item 2 0.24063 0.89583 0.23709
Item 3 0.32162 0.38871 0.81243
Item 4 0.24496 0.89196 0.44632
Jtem 5 0.10741 0.56493 0.89417
Table 15

Latent Probability Estimates from Manifest Matrices

Classes 1 2 3
Proportions 0.25059 0.45629 0.29313
Item 1 0.07434 0.68837 0.97527
Item 2 0.11245 0.89335 0.27152
Item 3 0.40173 0.36980 0.84572
Item 4 0.30603 0.86251 0.37809
Item 5 0.21666 0.51571 0.84486




Table 16

(sample #11)

Latent Probability Estimates from Manifest Matrices

(sample #12)

Classes 1 2 3

Proportions 0.18183 0.57094 0.24723
Item 1 0.00830 0.65074 0.96248
Item 2 0.00511 0.88838 0.10055
Item 3 0.29089 0.40058 0.82676
Item 4 0.27932 0.74728 0.39056
Item 5 0.17782 0.47576 0.86979

Table 17

Latent Probability Estimates from Manifest Matrices

(sample #14)

Classes 1 2 3

Proportions 0.21980 0.43411 0.34609
Item 1 0.17094 0.72512 0.91085
Item 2 0.16550 0.88971 0.27616
Item 3 0.24941 0.29794 0.88124
Item 4 0.27668 0.87312 0.40359
Item 5 0.13602 0.50690 0.84544

Table 18

Latent Probability Estimates from Manifest Matrices

Classes 1 2 3
Proportions 0.18583 0.51772 0.29646
Item 1 0.08332 0.67027 0.84559
Item 2 0.09983 0.88037 0.20709
Item 3 0.28201 0.39635 0.76176
Item 4 0.19960 0.81797 0.36751
Item 5 0.04124 0.47219 0.90331
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Table 19

Latent Probability Estimates from Manifest Matrices
(sample #17)

(sample #18)

Classes 1 2 3

Proportions 0.15493 0.62560 0.21948
Item 1 0.11884 0.71096 0.87807
Item 2 0.12784 0.81018 0.10242
ITtem 3 0.30295 0.47691 0.83757
Item 4 0.29637 0.75115 0.33045
Item 5 0.02746 0.54181 0.94277

Table 20

Latent Probability Estimates from Manifest Matrices

(sample #19)

Classes 1 2 3

Proportions 0.19736 0.40348 0.39916
Item 1 0.00829 0.65871 0.91336
Item 2 0.12723 0.90987 0.31259
Item 3 0.27494 0.34835 0.78712
Item 4 0.26857 0.90858 0.41437
Item 5 0.14736 0.47123 0.78861

Table 21

Latent Probability Estimates from Manifest Matrices

Classes 1 2 3
Proportions 0.28327 0.44652 0.27022
Item 1 0.24439 0.70831 0.90899
Item 2 0.17531 0.85297 0.22408
Item 3 0.30520 0.39052 0.93733
Item 4 0.25222 0.88870 0.31039
Item 5 0.20317 0.48838 0.86659




CHAPTER IV
THE PROPERTIES OF THE METHOD

To promote a greater understanding of the results given
in the previous chapter, some characteristics of the compu-
tational method must be examined. With reference to the data
necessary for the solution, items to be analyzed are selected
in two sets of m-1 items plus one additional item, m being
equal to the number of latent classes hypothesized. Assuming
that m = 3, we will consider five items arbitrarily numbered
1, 2, 3, 4, and 5. The total number of different ways of an-
alyzing is equal to 120; if we consistently define item 5 as
the stratifier, the total number of groupings or analyses is
reduced to 24. The pairs of manifest data matrices (P* and P)
associated with the different ways of choosing items for an-
alysis are presented in Tables 22, 23, and 24. Theoretically,
if we analyzed each of these twenty-four pairs of matrices,
twenty-four identical estﬁnates of the latent parameters
would result. However, since sampling will introduce varying
amounts of error into each element of the data matrices, this
will not be the case. Different analyses will then most like-
ly give different estimates of the latent probabilities. The

solution might therefore include the use of all twenty-four
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Manifest Data Matrices - Group 1

Table 22

56

Analysis p* P
1 P; Py Pg Pys  Pys
1 P; P3Py P;js Pi35 Pigs
| P2 Pz Pyy | Pas Pa3zs Pags
1 Py Pj Pg Pys P35
2 P; Py Py3 P15 Pigs Pi3s
(P2 Py Py | Pos Pogs Pos3s
1 P; Py Ps P3g  Pys
3 P, Py3 Py Pys  Py35 Poys
(P11 P13 Pig | P15 Pi3zs Pigs_
1 Py Py Py Pys P3s
4 P, Pyy Py3 Pys  Pass Pois
| P1 Pis Pi3 | P15 Pigs Pi3s |
1 P; Py P;  Py5  Pyg
5 P3  Pj3 Py3 P35 Pj35 Py3g
| Py Pig Pyy | Pas Pigas Pogs |
[ = [
1 P, Py Pg Pys  Pis ]
6 Pj Pz  Py3 P35 P35 Pj35
| Py Pyy Py | Pas  Pogs Piras_
P; Py Pg P15 Pys
7 Py Pig Ppy Pgs  Pias Poys
| P3 Pij3  Py3 | P35 P135 Po3p |
1 P, P Py Pps Py
8 Py Py Py Pas  Paas Pigs
| P3Pz Py | | P35 P35 Pi3zs |




Manifest Data Matrices - Group 2

Table 23

57

Analysis P* P
_ _ _
1 -
P, Py Py Pys  Pys
9
Py Py Py Pis  Pias Pigs
| P53 Pp3  Pyy | [P35 Po3s Pags
=3 = - =
Py P Pg Pys Py
10 Py Py Py, P15 Pias Pigs
| P3 P3q Py3 | | P35 P3s5 Pa3s |
1 P, Py Pg Pys  Pyg
11 P3  Py3 Py P35  Py3g Piys
| P1 Pip Pig P15 Pias Pigs |
p—re ) ———y — v—
1 Py Py Py Pas Py
12 P3  P3y Py P35 P3u5 Py3g
Py Py Pra | P15 Pias Pios |
1 P, Py P. P;c  Pis
13 P, Pio Pp3 Pys P12 Pa3s
Py P1g P3g | Pas  Pras Piys |
- - — -
1 P; P Pg P35 Pig
14 Py Pyz3 Py Pys5 Pa3s Pjps
Py P3y Prg | | Pas  P3as5 Pias |
1 P; Py Ps  Pj5 P35
15 P, Py, Py, Pgs  Pras Pags
Py Ppp Pa3 | | Pos Pras Posg
— - - -
1 P; P Ps; P35 Pis
16 P, P33 Py, Pys  P3gs Pigs
| Py Pz Py | Pos Pa3s Pios |
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Table 24

Manifest Data Matrices - Group 3

Analysis p* P
_ - - —
1
P, P Pg  Pys  P3s
17
Py P Py3 P1s  Pias Pi3s
| Py Pag  P3yg Pas  Pogs Pays |
=3 = = -
Py P, P; P35 Pys
8
1 Py  Pi3 Py Pis  Pi3s Pizs
Py  P3g  Pyy | |Pas  P3gs Pags_
1 P, P P5  Pps Pss
19 Py P,y Pay Pas Paas Pays
Py  Pro Py3 | P15 Pi25 Pi3s |
P; Py Pg P35 Py
20 P, P34 Py, Pas  P3ys Pogs
Py  Py3 Ppp| | P15 Pi3zs Pias
o — — —
1 P; Py Pg  Pyg  Pys
21 P, Pi; Py Pys  Pizs Poss
P3  Py3 Py | P35 Pi3s Pags_
- = =~ -
1 p, P Ps  Py5 Pig
22 P, Py Pj, Pys  Paas Pias
P3Py Py3 | P35 P3a5 Pi3s |
B 1 B ]
1 Py Py Ps  Pjs  Pyg
23 P; P13 Py, P35  Pi3s Pigs
P, Py Py | Pos Pias Pogs_
B 7 K n
1 P, P Ps  Pys FPis
24 P, Py, Pj; P35 P3gs Pi3s
| P, Py Py | Pas Pass Pias_
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pairs of matrices and the computation of an average of the
results to arrive at overall estimates of the latent para-
meters. But note that the matrices in Tables 22, 23, and 24
are classified as three different groups; these subdivisions
correspond to analyses 1l to 8, 9 to 16, and 17 to 24 in that
order. Each pair of matrices in one specific group consists
of elements common to all other pairs of matrices in that
group. The only difference between the matrix pairs in each
group is the positioning of their elements. Thus, the P*—lP
products formed from each pair of matrices within a group
will be similarity transforms of one another. Where Q is a

nonsingular matrix, we have

P = PQ , and (78)

From (78), the product matrix for which the latent roots are
to be determined is defined as shown in (79) where P;-lPs is
a matrix similar to an original matrix P*_lP. Since similar
matrices have the same characteristic polynomial and there-

fore the same roots, the estimated matrix D will be identical
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pr7lp_ = o7lpx7leg = o7t exp)0 (79)

for each pair of matrices in the same group. Although the
latent vectors will be different due to the fact that the
structures of the P*-lP product matrices are not alike, the
latent parameter estimates from the manifest matrix pairs in
the same group will still be identical after taking into ac-
count a repositioning of the elements in Ll and L2. Both of
these matrices have m columns, the first consisting of 1ls

and the next m-1 containing latent probability estimates for
that many items over m latent classes. Remembering that two
sets of m~1 items were selected (plus a stratifier which is
of no concern at the mament), it could be shown that the item
parameter estimates in Ll are for the items included in the
first set and that those in L2 are for the items in the sec-
ond set. As an example with m = 3, suppose items 4 and 1 were
taken as the first set and items 3 and 2 as the second; then
the second and third columns of L1 would contain estimates of

the latent probabilities for items 4 and 1 respectively and

the corresponding columns of L estimates for items 3 and 2

20
in that order. Thus, the structure of the estimated latent
matrices is dependent upon the initial item selection.

Since we have three groups of eight similar matrices

when m = 3, more than one solution using matrices from the
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same group would be wasteful because identical estimates
would result. Referring to the twenty-four possible analyses,
only three are necessary for the purpose of estimating the
latent parameters when using a constant stratifying item.
Considering the five different stratifiers, we have a total
of fifteen relevant analyses. Thus, knowledge of the similar-
ity transforms can be used to choose from all possible anal-
yses only those needed for efficient estimation; the only
pairs of matrices which should be used are those containing
elements absent from matrices which have undergone previous
analysis.

With reference to the results presented in Tables 8-21
in the preceding chapter, it will be recalled that the mani-
fest probability estimates from each of twenty random samples
were subjected to fifteen analyses. For six of these sampies,
none of the fifteen analyses resulted in an estimated struc-
ture; for each of the remaining fourteen samples, no more
than four structures were obtained. These results are pre-
sented in the Appendix. When more than one structure was com-
puted for a given sample, estimates were averaged to give a
single composite structure for that sample. In such a case,
the variation between corresponding latent parameter esti-
mates for a specific item was generally around 0.05 but, in

some instances, was as great as 0.25. Twenty samples of 500
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observations were also analyzed but only six of these re-
sulted in at least one estimated structure. Thus, it was
found that samples of 1,000 were necessary for consistent
estimation of the latent probabilities.

Erroneous estimates might be due to three possible
causes. The first is inappropriate specification of the num-
ber of latent classes; this is of no concern in the present
research since the theoretical population which was gene-
rated for testing the model had a known number of classes.
The second detrimental factor is that of latent matrix sin-
gularity. If one or more of the latent matrices is singular,
inaccurate estimation will occur because we cannot state that
the diagonal entries of D and the latent roots of P*_lP are
equivalent. Hence, the assumption that all the latent matri-
ces be of rank m is crucial. Of course, singularity is not
a yes-no characteristic but instead exists in various amounts
or degrees. Fraom experience with this procedure to date, it
can be generally stated that a violation of this assumption
may be recognized when LT&DL2 # P, the number of discrepant
elements possibly being related to the degree of singularity.
The trace of N may also be used as an indicator of this prop-
erty although this does not seem to be as sensitive as the
test previously mentioned. If tr N # 1.00000, singularity in

one or more of the latent matrices should be suspected. At
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any rate, good estimates were obtained when |A2| was equal

to +0.12. Reference is made to the Appendix and the second
estimated structure for sample #1 where items 3 and 5 were
chosen as the second set. It should be mentioned, however,
that no estimates emerged when items 2 and 4 were in the same
set, the determinant being of the magnitude *0.03. Since all
other determinants were greater than 0.12 (and less than
0.60) absolute, it does not seem likely that singularity of
the latent matrices caused poor estimation of the latent
parameters except possibly in the case cited above. The com-
bination of items 2 and 4 in a set occurs in only three of
the fifteen possible analyses for each sample. Therefore, any
error in the estimated structures must, in most instances, be
attributed to the third cause, that of sampling error. The
conclusion to be drawn is that the procedure proposed by
Anderson is very sensitive to random error; samples of 1,000
observations have been shown to be necessary for consistent
approximation of the latent parameters.

The last property of the solution is that the introduc-
tion of error into the manifest matrices does not affect the
check on the accuracy of computations; the matrix LT&DLZ
gave a perfect reproduction of P in each case regardless of
erroneous manifest probabilities. Since (60) and (61) are

identities, a solution will take place even if the estimates
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are beyond the limits of probabilities. As a result, the
structure may not always be interpretable from the psycho-

logical standpoint.13
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CHAPTER V

CONCLUSIONS

It would seem from the foregoing evidence that the com-
putational method proposed by Anderson for determining latent
probabilities is far too sensitive to sampling error to be of
any practical value. The necessity of using large samples
prohibits its use in almost all situations. However, this
fact might not constitute sufficient evidence for a definite
rejection of this method if this was its only defect. From
the previous discussion of the characteristics of the solu-
tion, we are left with the impression that the technique is,
to say the least, inherently awkward. First of all, the num-
ber of classes must be determined by a trial-and-error pro-
cedure; this difficulty might not be apparent in the example
given in Chapter III because the number of different latent
classes contributing to the manifest probabilities was known
to be three. Without previous knowledge, however, many anal-
yses might be run before the true number of classes becomes
known. In addition, the row and column interchanges in the
latent matrices caused by different patterns of item selec-
tion will almost always lead to ambiguous estimates in the

practical situation where the theoretical structure is not
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known. This will be especially true when the latent prob-
abilities associated with the stratifier over two or more
latent classes are approximately equal. Finally, Anderson's
solution does not make use of all the data simultaneously:;
the result is that many different structures could be com-
puted.

All of these considerations force a reevaluation of
Green's method. Although this technique does require the
estimation of several elements in the manifest data matrix,
it does not require initial knowledge of the number of la-
tent classes: furthermore, it uses all the data at the same
time with the result that only one solution is computed.
Even though some of the original data has to be approximated,
this is also a tolerated characteristic of factor analysis.
Assuming the computer is utilized, the increased computa-
tional complexity of Green's solution is a minor difficulty.
These facts create a need for further research in this area.
A similar investigation of Green's procedure might lead to
results more encouraging than those presented in this paper.
At any rate, practical application will be delayed until a

more robust model is derived and empirically investigated.




APPENDIX

ESTIMATED STRUCTURES FOR FOURTEEN SAMPLES

Computer output for the fourteen samples with acceptable13
structures is given on thé following pages. With reference
to the theoretical structure used by Anderson [1954] as
covered in Section 1 of Chapter III, the latent item prob-
abilities may be arbitrarily numbered 1 through 5 in the
first class, 6 through 10 in the second, and 1l through 15
in the third. By an appropriate numbering of the estimates
in the following structures, the row and column interchanges
in the latent matrices become apparent. Where more than one
structure was computed for a given sample, the corresponding

estimates of each were averaged.
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SAMPLE #1
[ X2 A2 2222 A2 2R R 2R R R X2 RS RR AR AR R R R R R X X
ANALYSIS NUMBER #P12345»
ESTIMATED STRUCTURE

—————— T — ——— — ———— A — ——— T ——— —— —— —— . - — o

CLASSES (3) 1 (2) 2 (1) 3
PROPORTIONS 025747 0.51468 0.22785
ITEM 1 (11) Co 24436 (6)0.69460 (1)0.95497
ITEM 2 (12) C.C4C4C (7)0.93297 ( 2)0.16859
ITEM 3 (13) Co33669 (8)0.36976 ( 3)0.85¢86
ITEM 4 (14) 0.314S4 (9)0.78916 ( 4)C.35876
ITE¥ S (15) 017495 (10)0.58680 (5)0.94772

Ly Ry s e RS R R Y
ANALYSIS NUMBER #P14352%
ESTIVATETSD STRUCTURE

———— ———————— A —— —————— ————— — ——— ————— — —— o —— - —— —
- ———————— " —— —— —————— T — ——— o — o — ———— " " — "

——— — ————————— - ———— ——— —— i ——_—— ——— ———— S T — — — — -~ —— o

ITEV 1 (1) C. 13666 (1)0.93432 (6)0.68057
ITEV 4 (14) C 20455 ( 4)0.35149 (9)0.80723
ITEVM 3 (13) C« 23154 (3)0.77330 (8)0.36069
ITEM 5 (15) C. 14533 (5)0.83159 (10)0.58703
ITEV 2 (12) C.C4734 ( 2)0.19816 ( 7)0.92531

R AR R SRR RN R SRR AN R F AR AR SRR AR B SRR RERS
ANALYSIS ANUNMBER #P2345]1+
ESTIM¥ATED STRUCTURE

o - — i T ——— . T~ ———— ——————— —— o ——— - " — i 7l ———

CLASSES (301 (2) 2 (1)3
PROPORTICAS C.261255 0.48865 0.24780
ITEV 2 (12) Ca€5951 ( 7)0.97739 ( 2)0.14413
ITEM 3 (13) C.2492¢ (8)0.33983 (3)0.86720
ITEVM 4 (14) C.33C07 (9)0.78923 ( 4)0.38884
ITEVM S (15) Co 16€41 (10)0.59573 (5)0.92026
ITEM 1 (11) 0. 25185 (6)0.69421 (1)0.93786

ryyeryerryrsssYSYYYEEXE LRI RS XS 2R AR A A A A R

ANALYSIS NUMBER #pP25341+
ESTIMATETD STRUCTURE

o — S T — ———— A —— — —— - — - - A —— . T T A D D — S — .

CLASSES (3)1 (202 (1) 3
PROPORTICAS C.26175¢ 0.49459 0.23785
ITEV 2 (12) C.C84CS ( 7)0.93311 ( 2)0.18916
ITEM S (15) C. 18283 (10)0.58654 ( 5)0.94170
ITEM 3 (13) C- 34175 (8)0.36454 ( 3)C.84617
ITEV 4 (14) Co 21489 (9)0.80777 ( 4)C.35834
ITEV 1 (11) 0. 25529 ( 6)0.69436 (1)0.95131

**ii}ilili*l}’{{il"l!.li{llll’ill&ililii’.*
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SAMPLE f2
T2 22 EEEREZR AR EERERZEEE R SRR E IR ERER R E L B X

ANALYSIS NUNMBER #P23451+

ESTIVMATED STRUCTURE
CLASSES (31 (2) 2 (13
PROPORTICNS C.208€65 0.46393 C.32742
ITEV 2 (12) C.12C21 (7)0.93936 (2)C.32717
ITEV 3 (13) Co26257 (8)0.38568 (3)0.74651
ITEV 4 (14) C.322¢C5 (9)0.78807 ( 4)0.45262
ITEM 5  (15) C.C6177 (10)0.50522 ( 5)0.97343
ITEVM 1 (11) C.1822% (6)0.66844 (1)0.9C667

IZEXZZEXXZZSRIZ RS RARLES RS R SRR R 2SR 2 X2 R 2 2 2
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SAMPLE 43
ii.ilil"l*il*iil'ilIl.l'{{".}l'lli!}li'lii
ANALYSIS NUMBER #F12345s
ESTIMATETD STRUCTURE

TS T ST A ST S i s e e e . . . . s ————— — —— — — — —— . i " — o oo i
T D S R i D S e e e . . e e s e . p _———— — — — o —— . . o T — vy 2 S o,

T I i T S i ) O e o T —— " "o . - . . T . Y v " o

1 (11) C.C6€632 (6)0.72699 ( 1)0.86481
2 (12) C.€8272 (7)0.863C8 ( 2)0.19999
ITEV 3 (13) C. 28242 (8)0.36120 ( 3)0.75331
4 (14) C.22481 (9)0.80206 ( 4)0.46438
5 (15) C.C6C04 (10)0.43729 ( 5)0.88452
lllllllliill{llillll!l!l!i!llll!l!l!l'lll!li

ANALYSIS NUMBER =2P25341+s

ESTIMATETD STRUCTURE
CLASSES (3)1 (2)2 (1) 3
PROPORTICNS C.19¢886 0.35749 C.44365

. — o ——— — — " ——— —— T ———— — — ] —— — —— > — ———— ——

ITEéM 2 (12) C. 18289 (7)0.81643 ( 2)0.39393
ITEV 5 (15) C.C6548 (10)0.48497 ( 5)C.77496
ITEM 3 (13) C. 30884 (8)0.19801 ( 3)0.79521
ITEM 4 (14) C. 26242 (9)0.99968 ( 4)0.40446
ITEV 1 (11) Ce 11563 (6)0.75144 ( 1)0.84384

LAA RS A S AR RS R R 2R XSRS R R RS Y RN REY R NN G S grgrgrey
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SAMPLE #5

AR R R NN AR RN SRR AR R R R AN RN RN
ANALYSIS NUMBER #P12345s
ESTIVFMATETSD STRUCTURE

- —— o - ————— o —
- - - ————— —— o ———— —— v —— o

CLASSES (31 (2)2 (1) 3
PROPORTICNS C.1945C 0.47506 C.33045
ITEV 1 (11) C.C9C31 (6)0.65963 { 1)0.92322
ITEM 2 (12) 0.16165 (7)0.94880 ( 2)0.19315
ITEV 3 (13) Co2127% (8)0.42194 ( 3)0.754C6
ITEV 4 (14) Co29813 (9)0.83499 ( 4)0.44287
ITEV S (15) C.C5841 (10)0.47667 (5)0.85095

22 Ty Y T Y Y YT YT YT YT RT PP s P rw Yy
ANALYSIS NUMBER #P14235s
ESTIMATED STRUCTURE

——— —— ——— — ————— ——— —— ——————— —— — ———— ————— ———— A ——_— ———
—— - ——— ——— ————— ————_——— — ——————— —— = —— . —————-——

- —— - —— ——— —— - —~ o — — — o ————— ————— ———— ——_— —

ITEVM 1 (11) C.C0468 (6)0.72173 ( 1)0.92182
ITEV 4 (14) C.20707 (9)C.83825 ( ¢)0.39312
ITEM 2 (12) 0. 16698 (7)0.84318 ( 2)0.19894
ITEM 3 (13) C.21428 (8)0.44590 ( 3)0.79004
ITEM 5 (15) Ce€C9171 (10)0.47713 ( 5)0.92239

RN RN BN N R RN TSR NS E R R AN RN R AR E RN B RRENSE
ANALYSIS NUMBER #P2345]1+
ESTIMATED STRUCTURE

—— —————————— S ———— - ——— —— — — — ——— T — T ——— ————— " o

CLASSES (3)1 (2)2 (1) 3
PROPORTICNS C.18408 0.515932 C.30C00
ITENM 2 (12) C.C873C (7)0.85574 { 2)0.29477
ITEVM 3 (13) C. 176817 (8)0.46585 (3) 0.72€20
ITEV &4 (14) Ce 27425 (9)0.85452 ( ¢)0.36549
ITEV S (15) Co 10225 (10)0.42125 ( 5)C.94282

ITEV 1 (11) €C.€5C98 (6)0.67540 ( 1)C.92720
RN R ER AR R R AR NI NN SR RN E AR R R B AN TR AR R RN RN
ANALYSIS NUMBER #f£25341+
ESTIVFMATED STRUCTURE

- —— — A —— ———— T —— T — . Y o—— ——— —— — _———_ . ——— — — .

CLASSES (3)1 (2)2 (13
PROPORTICNS C.20117 0.4C278 0.39604
ITEM (12) C. 11584 (7)0.94373 ( 2)0.35797

2

5 (15) C« C514C (10)0.48292 ( 5)0.79321
ITEV 3 (13) Co 245C7 (8)0.34321 ( 3)0.76622

4 (14) Co 31144 (3)0.90610 ( 4)0.43779
ITEV 1 (11) C.€C7594 (6)0.66531 ( 1)0.89068

IZXTXYXZISSSIS RS RS SSARZ XSRS RS R RS 2SR AR R A AL 2
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SAMPLE #6

FARARABRAB AR ER ST RAAEBARAER AR ARSI RAREERTRERRS

ANALYSIS NUMBER #P12345+

ESTIMATET STRUCTURE
CLASSES (3) 1 (2)2 (1) 3
PROPCRTICAS C.21215 0.45069 C.23616

———————— — —— . ——— - ———— — ——— — " - i S

1 (11) C.145CS5 (6)0.73453 ( 1)0.78292
2 (12) C.2C571 (7)0.92378 ( 2)0.16307
ITEM 3 (13) Co2731€ (8)0.396C9 (3)0.76827
4 (14) Co2417€3 (9)0.84599 ( 4)0.32705
5 (15) C«C6CIC (10)0.49438 ( 5)0.84894

L2 222222 SRR 222 X2 2 A X222 R Ao R A XA o X 2 X2 J

ANALYSIS NUMBER #F25341«

ESTIWMATETD STRUCTURE

cLasses W1 @2 M3
PROPORTICNS  C.1941C  0.53322  0.27267
U ITEM 2 (12)C.C5182 (7)0.89333 ( 200.10487

(13) C.272C€ (8)0.404C9 ( 3)0.8B3147
(14) Co25C94 (9)0.77667 ( 4)0.29761
ITEV 1 (11) C.C9475 (6)0.73812 (1)0.78491

IZXZEEXXESEEESE SR ZESEERER R RE S S RRRRE S SRR B S & 2 &)

2

ITev 5 (15) C.C5375 (10)0.51060 ( 5)C.87396
3
4
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SAMPLE #8
I ZEZX XX EEZEEEEREZZIRIZEEREIE SIS RS RRSRRERER X R 2K X
ANALYSIS NUNMBER #P12453s
ESTIMATETD STRUCTURE

—— ——————— " ——— —— ———— T —— T —— — o " . . ——— — — . — —— ———
—— — — —————— ——— — — —— > o " — —— — ———— —— ——— " ———— " —

————— > — — ——— . — — —— — ——— ——— —— ———— — o —— —— ——— — —

1 (1) C.2C€38 (6)0.72637 (1)0.77572
2 (12) 0.27€74 (7)0.88494 (2)0.27171
ITEVM 4 (14) C.326C1 (9)0.95532 ( 4)0.37050
5 (15) 0.C4866 (10)0.53248 ( 5)0.83999
ITEVM 3 (13) C.21724 (8)0.36404 (3)0.77824

IZXXEXYEXZEXRIRER NI R 2RSS RS RRR R RE R R 20 BB & & 3
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SAMPLE #9

LA AR R AR AR SRR EZEERRZEZES SIS R RSS2 2

ANALYSIS NUNMBER #P12345«

ESTIMATED STRUCTURE

Ccuasses @1 @z M3
PROPORTICAS  C.18730  0.43210  0.38060
CITER 1 (1) C.11896 (6)0.66975 ( 1)0-88366

1

2 (12) Ca15453 (7)0.92966 ( 2)0.24789
ITEV 3 (13) G.2169C (8)0.38430 ( 3)0.79882

4 (14) C+ 28111 (9)0.84239 ( 4)0.46072

5 (15) Co13477 (10)0.51036 (5)0.90182

28RS SR SR RS R Rl R R X2 X222 X2 R R X2t X X L

ANALYSIS NUNBER #F12453as

ESTIMATETD STRUCTURE
CLASSES (3)1 (2)2 (1) 3
PROPCRTICNS C.23872 0.42303 0.33825

—— e - ——— —————————— ——— ———— —————————— o — - —_ — " —— e

1 (11) 0.3016¢€ (6)0.62925 ( 1)0.91587
2 (12) C.41E66 (7)0.85564 (2)0.18654
ITEM 4 (14) Co 14191 (9)0.95992 ( 4)0.44951
5 (15) Ce€5351 (10) 0. 64004 ( 5)C.90308
3 (13) 031235 (8)0.43394 (3)C.80374

[ EXXEZX XSRS EES SRR AL R R RER RS2 R 2 R L2 2R R

ANALYSIS NUNMBER #FP25341+

ESTINMATETC STRUCTURE
CLASSES 31 (2)2 (1) 3
PROPORTICNS C.20CQ07 0.41959 0.28C34
ITEM 2 (12) G. 14871 (7)0.90219 ( 2)0.30683
ITEVM S (15) Co132394 (10)0.54438 ( 5)0.87760C
ITEM 3 (13) Ce23262 (8)0.34788 (3)C.83474
ITEV 4 (14) C.2118€ (9)0.87357 ( 4)0.42873
ITEV 1 (11) Co 11676 (6)0.69601 ( 1)0.87448

ARSRRRARRBBERARBASEPEIRRERRELBRRRABRARRERRRRER
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SAMPLE £10
llIlllilliliﬂiill.ll!l’l*lllillli!’!lil'llil
ANALYSIS NUMBER ®P23451«

ESTIMATED STRUCTURE

A - S — i — D . T —— - —— —— ——— ——- J— — — Y S iy " S~ - — —— ———————
- T . . " — — ——— ———— - —————— —— . — iy, S~ —— <~ — -

. - > — A —— T T ————_— — . ———— ——— A — o ——— " = —_— < ———— atn wiee >

ITEM 2 (12) C.C7581 (7)0.92171 ( 2)0.20696
ITEM 3 (13) C.28701 (8)0.42065 ( 3)0.83139
ITEM 4 (14) Co31644 (9)0.81199 ( 4)0.40381
ITEM 5 (15) C«221797 (10)0.51269 ( 5)0.88320
ITEV 1 (11) CoC963C (6)0.68873 ( 1)0.99903
il&l!lilil&iill&ﬁi!llll!lllillillil&lll!lill

ANALYSIS NUMBER #F25341+

ESTIMATED STRUCTURE
CLASSES (3)1 (2) 2 (1) 3
PRCPORTICAS Ce24403 0.43023 0.32575

- i D e T — —— ——  — — —— " —— T ——— — ] — ——— o . ——— > ——

2 (12) C.145CS (7)0.86499 ( 2)C.33608
ITEM 5  (15) 0.20534 (10)0.51873 ( 50.80652
3  (13) C.4lt4s4 (8)0.31895 ( 3)0.86005
4 (14) Ca29261 (3)0.91303 ( 4)0.35237
ITEV 1 (11) CeC4S37 (6)0.68801 (1)0.95151

FREEERERANE RN A BB ERE R AR BRRBER B AR AR ABERERRRRR
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SAMPLE #11
XX AR R SRR R RAREBARBARA R R AR ARV EERRRERRARRRRRS

ANALYSIS NUNMBER #F25341+

ESTIMATED STRUCTURE
CLASSES (3) 1 (2) 2 (1) 3
PROPORTICNS C.18183 0.57094 0.241723
ITEN 2 (12) C.C0511 (7)0.88838 ( 2)0.10055
ITEM 5 (15) C+ 17782 (10)0.47576 (5)C.B6G79
ITEV 3 (13) C«29C8S (8)0.40058 ( 3)0.8267¢
ITEV 4 (14) C.27632 (9)0.74728 ( 4)0.39056

ITevy 1 (11) CoCOB3C (6)0.65074 ( 1)0.96248

2222 AR RS RES XA ZERSRRRRZ R 2R R 2 XA X2 R XKEZES 2]
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SAMPLE f12

H#RRA B R AR RAARBESR A FEAR A B R B RRBEERRARERARB ARG

ANALYSIS NUMBER ®#P12345+«

ESTIWMATETLD STRUCTURE

cLasses O1 @z M3
PROPORTICAS  C.2071€  0.42100  0.37183
Crter 1 (11) 0.16387 (§)0.70125 ( 1091123

1

2 (12) C. 14722 (7)0.91626 ( 2)0.27365
ITEV 3 (13) C.24€9€ (8)0.29913 ( 3)0.83614

4 (18) Co 25244 ( 9)0.86353 ( 4)0.44416

5 (15) C«13354 (10)0.47648 ( 5)0.84645
HERBFERERRBBIRARRRTFRREAB R RAEREEERERRRRRERERTES

ANALYSIS NUMBER #F25341=

ESTIMATETD STRUCTURE

cLasses O @2 M3
PROPORTICAS  0.23243  0.44721  C.32035
CITEM 2 (1) G.18377 (7)0.86315 ( 2)0.27867

(13) 025185 {8)0.29674 ( 3)0.92634
(14) C.30C92 (9)0.88271 ( 4)0.36302
ITEV 1 (11) C«178CC (6)0.74898 ( 1)0.91046

(I ZX X222 RS RZS2ARR R R RS RX SRR R SRR RS2

2

ITEV 5 (15) Ce1365C (10)0.53731 ( 5)0.84442
3
4
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SAMPLE f#14

LA AR RS AL L SRS R R RSS2 SRR SRR RS R R 2

ANALYSIS NUMBER #P14235«

ESTIMATET STRUCTURE
CLASSES (31 (2)2 (1) 3
PROPORTICAS C.17512 0.€1679 0.20409
ITEV 1 (11) C.C770€¢ (6)0.68166 ( 1)0.87C95
ITEM 4 (14) Co 18783 (9)C.8C963 ( 4)0.235C9
ITEM 2 (12) C.11464 (7)0.76711 ( 2)0.16816
ITEV 3 (13) C.2€1€1 (8)0.45355 (3)C.78591
ITEVM 5 (15) C+C3S11 (10) 0.49024 (5)C.99768

I EE R ZER R R SRS AR RSS2SR RSRRRERER R R

ANALYSIS NUMBER #F23451+«

ESTIVMATED STRUCTURE
CLASSES (3) 1 (2) 2 (1) 3
PROPORTICNS C.19253 0.41865 .28882

1ITev 2 (12) C.CB5C1 (7)Ce99362 (2)0.24602
ITEM 3 (13) C«20241 (8)0.33915 (3)C.73760
ITEV 4 (18) C.21137 (9)0.82630 ( 4)C.49992
ITEV S (15) CeC423¢ (10) 045414 ( 5)0.80893

(6

ITEV 1 {(11) C.CBSS7? )0.65887 ( 1)C.82C23

ERRERREAERFTRER XL FRRRAABFERAARRRRERRAAERERERERER
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SAMPLE £17
[T XZXRZ2ZX A SRR RAR SR AR E R R R AR R R X2 2
ANALYSIS NUNMBER #P12345+
ESTIMATETL STRUCTURE

A — - ——— T —— A —— — A —— v - . T - ————————— .

CLASSES (3) 1 (2) 2 (1) 3
PROPORTICANS C.16285 0.60367 C.23348
ITEM 1 (11) Ce136¢3 (6)C.71101 ( 1)C.87396
ITEM 2 (12) Coe1824C (7)0.81C07 (2)0.13328
1TeEd 3 (13) C.230617 (8)0.47483 (3)0.82448
ITEd 4 (128) C.29€64 {9)0.76663 (4)0.32938
1TEM 5 (15) C.C3€54 (10) 0.54190 ( 5)0.92908

R AR AR AR AR R R SRR RN RN R RN R E R R RN AR REDN
ANALYSIS NUMBER #F25341+
ESTIMATETD STRUCTURE

- ——————— - —— —— o — — ———— Y — —— - —— - o~ ——

CLASSES (31 (2)2 (1) 3
PROPORTICAS C.l1470C 0.64752 0.20548
ITEM (12) C.€C7227 (7)0.81028 ( 2)C.07156

2

] (15) C-C1837 (10)0.54171 (5)0.95646
ITEM 3 (13) C.29672 (8)0.47898 ( 3)0.85065

4 (14) Co29¢€¢0S (9)0.73566 ( 4)C.33152
ITEM 1 (11) c.C98C4 (6)0.71090 ( 1)0.88218

ARRBFRARRABAESRERERFABEZRRAERRBERRARBAHERRBTRRERRRRSR
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SAMPLE 18

R R Y IR Y E N TYRT TR TTRFY F R Py
ANALYSIS ANUNMBER #F25341+#
ESTIVY¥ATEDPD STRUCTURE

CLASSES (3) 1 (2) 2 (1) 3
PROPORTICAS C.19173¢ 0.40348 C.3991¢
ITEV 2 (12) Coe12722 (7)0.9C987 ( 2)C.31259
ITEVM 5 (15) C.1473€¢ (10)0.47123 (5)C.78861
ITEM 3 (13) C.27494 (8)0.34835 (3)0.78712
ITEV 4 (14) C.26E57 (9)0.90858 ( 4)0.41437

ITEVM 1 (11) C.CCE29 (6)0.65871 (1)0.91236

L2 22X XX 2R AR ESSRAEERERE RS RR RS2 RR R R 2
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SAMPLE #19
FER AR AR R AR RRRR AR RBARAERBRRRARRAERERR LSRR RRRN

ANALYSIS NUMBER ®#F12345+

ESTIVMATETLC STRUCTURE
CLASSES- G;I ........ &5;----———1:;;--‘

PROPORTICAS  0.18624  0.52979  C.28197

Crter 1 (11) C.1351€ (6)0.67198 ( 10.90008

1

2 (12) CoCT7872 (7)0.77953 ( 2)0.21703
ITEV 3 (13) Co2879¢ (8)0.37564 ( 3)C.92485

4 (14) Co1558€ (9)0.83759 ( 4)0.29051

5 (15) C.13741 (10)0.46389 ( 5)0.85601

(22222 R AR XSRS RRZS SRS RYR SRR 23

ANALYSIS NUMBER #P15234+

ESTIMATED STRUCTURE
CLASSES (3) 1 (2 (2) 3
PROPORTICANS C.34£86 0.26187 0.38924
ITEM 1 (11) Ce 34547 (1)0.93823 ( 6)0.69308
ITEV S (15) Co 29723 (5)0.89182 (10)C.45154
ITEV 2 (12) c.1856C ( 2)0.30520 ( 7)0.88460
ITEM 2 (13) C.338C2 (3)0.94631 (8)0.38090
ITEV 4 (18) Ce2741C ( 4)0.38294 ( 9)0.92252

(222 R AR EERREEEESEERRESRS RS R R R RR R RZERRE SR

ANALYSIS NUMBER #F12453«

ESTIMATETL STRUCTURE
CLASSES (3) 1 (2)2 (1) 3
PRCPORTICNS .28193 0.32698 0.29109

1 (11) C.22¢€85 (6)0.76830 (1)0.89301
2 (12) C.29€1C (7)0.98422 ( 2)0.18318
ITEV 4 (18) Co27472 (9)0.94640 ( 4)0.35187
5 (15) Co2313% (10) 0.54165 (5)0.85036
3 (13) C.20581 (8)0.41394 ( 3)C.89955

ERBEBASARERBFRRAFAR AR AR RERBRETRRREARRERERERN

ANALYSIS NUMBER #F25341=

ESTIVMATETL STRUCTURE
Cciasses ()1 (202 (13
PROPORTICAS  C.21401  0.54006  0.24593
Crer 2 (12) €.13882 (7)0.76351 (2)0.19092

(13) C.28S01 (8)0.39158 (3)C.G7861
(18) Co2041G (9)0.84829 ( 4)0.21624
ITEM (11) C.166CS (6)0.69989 ( 1)0.90463

FAUBBEFRABARARRER AR A B ARG ER A AR R R EARARERIRSARNR

2

ITEVM 5 (15) Co 14668 (10) 0.49642 ( 5)D.B6E18
3
4

p—
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FOOTNOTES

lEquation (1) is from Anderson [1954] and equation (3),
from Lazarsfeld [1959]. Without going into detail here, #(x)

is assumed to be discrete in (1) but continuous in (3).

2Referring to (3), Lazarsfeld notes that ag and ai cor-
respond to the probability that a person will give a positive
response to item i1 regardless of his position on continuum x

and the discriminating power of item i respectively.

3This is commented on by Horst [1959], pp. 38-39.

4The order of presentation is similar to that used by

Horst in that the excessive steps in the solution of Green
have been eliminated.
5

From (22), a more basic form of (24) which might be

. -1 T -1
used is Q = B P(l)[B ] .

6The notation of Anderson will be used here and for the
remainder of this paper. It is independent of Green's nota-
tion in that the same symbol may have a differenf meaning in
each solution. For instance, Anderson uses p as a statistic

while Green uses it as a parameter,

7 .
Summation concerns o where ¢ = 1, ..., m.

82
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8One characteristic of the programmed solution is that
the real positive latent roots are found in an order related
to their magnitude, that is, from smallest to largest. This
is inherent in the operations performed by MATVEC, the sub-

routine used to compute the roots of the matrix P*_lP.

9 .
The maximum number of latent classes to which the pro-

gram LSA can be applied is, at present, equal to ten.

10 .
The matrices II* and I as computed by THEO are theoreti-

cal in that they are based entirely on Al, A N, and A.

21
1 .. . . . .
Slightly inaccurate computation is evidenced by the

fact that, although the first column of both A, and A2 con-

1
sisted of ls and the off-diagonal elements of N were 0Os, the
respective entries in the computed estimates are 1.00000 and
either 0.00000 or -0.00000. This means that, where five
zeroes are present to the right of the decimal point, there
is a fractional part of the number which is less than the
absolute magnitude 5 X 10_6, this amount of error being con-

sidered negligible.

l2A positive response to one of the five items is repre-

sented as a "l1" and a negative response, as a "0".

l3The only structures to be considered were those in

which all estimates were between 0 and +1.
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